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The proslem o be congidered is motivabted by

o

e a linear control gysten of

the fellowing considerations. Supp

the form

(1.1) x o= A (t) + A (t-o) + Bou(t), g >0

is given. Starting from a given initisl function © &t timz a

the problem is Lo bring the system to rest at a

is minimlized on a class U of admisgible controlsg., The rest
positvion or equilibrium position is in this cage the zero function

0] (cf. [8]). Tollowing Hale [8] if x! [a-c,b] >R
on [-0,0] . [0]). TFollowing Hale [8] 1f x! [a-¢,b] =&

and t ¢ [e,b], then we use xy for the function on [~ ©

o d

ined by % (9) = x(t+6), -0 < 0 < 0. In this notation the bound

conditions for the sbove problem are x_ = @, = 0. Our purpose
&a ) S

[N

n this note 1s to presgent a sgolution to this type of problem by

the clagsical method of Tagrange multiplierg in a Banach space.

actual systems we consider will hove the form

(l‘l:> X(t) = f("’%X(t)}X<t--c7>ju('t>;U,(tw’[')>) 0,7 >0

2
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function (x'i . Scction )

vhere 0 dg in genc

boundary conditions

(1.2) X, =P X, o=,

The problem ig Lo min: Tunctional

s/

= [ L{t,x,u)dt
a

(1.7
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o
o

>
\e
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on & suitable class of admisgible pairs (x,u) satisfying (

-
1

and (1.2). (If one wants to bring & linear system of the form (L.1')

to equilibrium when there ere lags in the controls, Then sppropriate

-

functional end conditions on the admissible controls u sghould algo

be imposed as in [37]).

When this problem is formulsted ac a Lagrange multiplier

. . 1
problem in Sobolev gpace EQ

(cf. [9]) a vather complete soluti
to the above variational problem is posgible. In particular, we
obtain necegsary and sufficient conditions for the Legrange multi.

SRR ST

plier problem Lo be regular [169 17]) in the form of a controllsbiiity

sl
S

result, thereby giving conditicns for normality in the sense of the
calcuvlus of variationz. A scl of necessary conditions for an opti-
mz) control ig derived, and for a special clasg of convex problems

o

ficient. Ixistence and unlqueness

these conditions are also su

theorems for an optimal control are also established.




There are zood

aphies on recent developments for

TS
\

Tuncetion

‘eren

1oaigd

ial equelions in

e

conbrol problems invelving

we have not found any litevature on the

optimization problem proposcd above with the exception of [11] end

[12]. Xao in [11] considered = special case of the above problei,

There the Tagrange multiplier prob

em was formulated in the D-

y

¢ of continuous functions with the norm of uniform convergence.

In thet formulation conditions for a regular Lagrange multiplier
problem couwld not be obtained. Nonetheless formal calculations

led Lo a valid sufficient condition. Tn [12] Kent obtained results

for a general class of problems (involving neutral functional dif-

L

ferential ecuations) which at least partially cover those oblali
1 L

nerein. There is in [12] the explicit hypothesis that function
in (1.2) be conbinuously differentiable and other than the zero
function, However, thils condition can easily be relieved by a
number of deviceg., Kent did not obtain conditions for the regu-

larity (or normality) of his problem as we are able to do (cf.

Lemno 5. Kent's method of solubion (based on

a

[197) differs substantially from the more

clasgical one which we give. The approach we have tsken indicales
N de A . y71‘ . ] : . 1y
that the Sobolev sgpace My s e rather attractive choice of the

state gpace for our control problem,



Leb & be an open sube

B, end let I' be a Banach spece. I NI -1 g

Trechet differentiable ab X, € E?J then we uge ﬂ’(xo) to denche

cchet differential of I at x,. Suppose I i conltinuot
0
erenbiable on &V, Tuaen XO e 9 ie called s

Frechet di

of the transformation T if 1 ({x.) is a surjection {i.c.

maps K

o F). If E=I X5, X = (a),85) € G, then we
will use the subscript notation of Dieudonne's text [5, pg. 167
for partial derivetives. That is, the Frechol derivative of
XlAP>H(lea2>5 (Xlﬂa2> e 9 (respectively, R ﬁ(alﬂxg)j
(aljxg) e &) is denoted by Dlﬂ(alﬁa2> (respectively D2E<al)a,})q
The Benach spaces which are used in this paper are
actually real Hilbert spacesg. If I is a real Hilbert spacec we

] nl

use (x}y> for the scalar product of x and y € E. We also use

I+

of & linesr operator. The context will make clear in which spsce

| for any norms that come into the discussion including the

N

the norm ie being applied, and there will be no need for digtinguish.

p 7

norme.  The notstion R denot

ing subscripts on the varic

Euclidean space of p dimensions, p= 1,2 ... . Vectors x ¢ R

4

will be wrilten as column vectors. We use A o denolte the ad.-

=
>

joint of a given lineagr operatlor. Thus in the casc ol a mat
A
A A" denotes the transposed matrix,

In all gituations where the notion

aretood, I

tervenes Lebeggue measure 1s un



. . - 7 ' = '
(o, 6] H ) in its uswal sense [O] Lo denole

the Hilbert space of all "square integrable" functions on [o,f] with

functions if they are equal almost everywhere (a.e.) on

L . 1. P o
[e,B]. Ve use Wg(Lﬁgpijp) to denote the collection of all ab.

N . R D A . [y £ ' ~»,p " - e - (t) o .: F . =
solutely continuous 70 [o,f] - R°  such that T i-. Lt = Z0t)  ds

. . R o . A - .
in Ip([a}Bj);Rp)e The inner product on W2<[Q3BJ)RP) i

(2.1) (7,85) = (Z,(0),%,(6)) + i (Zl( ), % (5) Y at.
[0

. . .p ., .. . - .
(La;Bjo ) with thils inner product is a HWilbert «

Now we discusgs the agsumpltions that will be neceded for the
functions © and I which were formally introduced in equations

. - L . n n . .m moom .
(1.1t) and (1.3). The functions fI RXR X R XE XR -} and

)

.

n o .m . . .
RXE XE —R are assumed to be continuous. Generic pol

[

_n no_o.m_ , n _ .m
RXR XR XE xR (respectively, R X R X K )

are denoted oy
(+ . . capectivelyv PR Dy - o ] 4
\L,rljrsz5yru) (respectively, (L’Pljp2>), For each fixed %

fuanctions £ and I are taken to be conbinuously differentisble

il

. - ) 1 71\ ‘

in the remeining arguments. Let X = W,([a-0,b],R7), 0 >0 and let
<

P I3 T L ( " jl"(\ l .

(.2 U= {uce LQ\[amxﬁb]?h Nult) =0

Suppose also that b > max (a+6;&+T>. The set U 1sg called the gel

o k2

of admissible cont rols and we will congider U to be identified in

A & 'l_\m
ith I ([e,b],R).
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with congtraints. x ¢ X, uw el

x(6) = £{t,x

where @ and V¥ are fixed elements of X =W
kinds of end conditions, e.g.,
G{x, ) =0
()

. r . . I =) . " . -

where G. X - R is contbinuously differentiable can also be handled
o

essentially by repeating the srguments for our solution to (P)u
Problem (P) represents the mogt difficult case gince it ig here that

the regularity conditions will be most difficult Lo satisfy. AL

rate in this paper only problem (P) wlll be treated. It ghould also

be mentioned that there are varxious devices in the clasgical theory

1

ol calculus of variabions for treating additicnal constraints on

Nyt e T e T - P - ‘ 1 £ o —
controls v e U, e.g., |u| <1, i= 12 . .m where us=

.\(_
(11]'; cen 11n1) "L

5 An instence of this ie illustrated in the exanples
al the end of the paper (cf., alsco Ramsrk 5.2).

Although we still do nol have enough assumptions on the func.

tionsg £ end T, for us to sel up the Lagrange multiplier probl

vhich we heve in mind, nonetheless, Jlet us "define” formally the



opex g it
itionsl hypotheses sre needed. Let of. X X U =X be "delined

if a-~-o<t<a

1

(2.2) /(,u)(t) = | x(t) - o(t-a) - [ £(s,x(s),x(s-0),u(s),uls
)
e <t <b.

$7 ds to be

well defined for each (x,u) ¢ X XU =

growth conditions are going to have Lo be imposed on f in the

argunents r5 and. ru. Moreover, we will need &7 +to be

tinuously Prechet differentiable. Taking into account the

X and U one seeg Thal rather stringent growth restrictions on

are required. What we acltually need are hypotheses for I and

that asgure:

and T XX U-YX

(2.h) JIXXU=R 2 are both well

defined and continuously differentiable.

The hypotheses we maske are.! there exist functions M. R X R X R

) . _n . )
~>R} m. B X R — R which are bounded on bounded sets such that

(a) Hf(tjrl,r 7

2?"5ﬁ




HDIF<LJ7ljr?/1j/rM) - D‘f<tﬁwl,r2)r%;xﬁ>u <
(2.5) M(t)rl/rg)[ur) - ré! 4 HI“ - JL“’/
i= lf?77L532 € Rn} and r,,r),rt ry, € i

() (b2 ,p) - 1, e, P20l < m(t,py)ly - ph

3

n . m
Py € R, py,pp € R

2

s

Here Dif (respectively DiL) denoteeg the partial derivative with

[

respect to the argment r, {respectively pj) with the correspond-

ing subscript.

With these assunptions it can be ghown that (Q,h) ig satis-

fied. Moreover, if (x,u) e X X U, then the Frechet differentisl o

o7 at (¥,U) in the direction (h,v) € X X U is given by



2.6) &7 (Z,0) (0, v) (£) =

where
gy
= D8, 5 (), 5 (sm

.. 1
A similar

and we have

b
JH(x,0) (b,v) = [ (D

hyv eX xU. Let ¥ X XU-X
(2.9) $(x,u) = x, - v,

The mapping

(2.10)

mesning

>

hit), if a - o<t <a

\

t
h(t) - [ [])l:[‘(s)h(s) + Dg?('.%;}.i/l(sa o

]‘B:ﬁ‘(s)v(s) + 3;“:4:E'(s)'v*(s.ﬁ)_"]fi_f::y

I_.'c
-

a<t<hb

o),ule),uls-1)), a S

"
AN
-

is sssipned to D.T{s). i = 17
is sssigned to D.I{s), i = 1,2,

15(e),n(e)) + (DL(s),v(s))ds,

]

- o
D.L(e), 3= 1,2

N



The optimization problem (P) has now been transformed into

o
o
i~

ing lLagrsnge mu 1t iplier problem:

[ g

P Minimize (loczlly) J{x.1n) on the manifold
v NTTD

M= {(x,u) e X x U] H{x,u) = 0].

The unpleasant conditione (2.5) (a), (b) wherve imposed

T'\

{a-7,b1,R ) and required (2.4).

because we mwade a choice of U C 5.{
\ }

an unfortunate of the function gpace Uy

had chosen U €0 be the corresponding suhspace of
. oon - ), e

b],R7), the result (2.4} couvld have been obtained directly

from the differentisbility conditions on £ and L. Bubt the in-

vestigation of conditions for the regularity of the transformation

H in problem (PL) given in Section 3 (to follow) would dictate the

cice of the spaces X and Xr as the corresponding Sobolev spaces
)
W

h
1 . e .

. While we do not want to rule oul this approach, it seems clear
<«

that the solution to (PL) with this change of spaces X,X

L and U
b (o

will be substantially more complicated. Iikewise for a number of
problems a suitable B-space C of continuous functions (with the
norim of uniform convergence) turns out to be a pleasant choice for

XqXU; and U. However, simple examples of problem (P) show that

gome algcontinuities in the conlrols v must be allowed. Moreover,
if the state spaces X and X( are spaces of continucus functicns
J

C, then the regularity condition that will be needed on H see
J jen)

Section 3) will not be true (cf. [11}).  In effect

N




I forces a cerbain type of "compatibility

and U. We do not c¢laim thal some other choices of

spaces ;}XU;U' could not also lead to a corrvecl golution to (1)

wore or lese complete nature of the

are able to obtein using the Sobolev

n, . .
R for The state spaces X

)
)
S
jor

offer some fairly

XG respectively and using y

O
[
~
=
par
=
@]
}__J
w
o
O
6]
w

I
e

strong support for our cholce of spaces.



R '

In this sectlon the gquestion of

§%. Regul

[
QL

regularity of the transfo I in (PL) is congidered. Only the

special probl

with no lags in the controls will be treated, i.e.

J
‘ N o ; ] 4 e - R n
we assune that f  ig independent of rh so that f. R X R X R ¥

R —R . The case lags in the control can also be treatbed. bus
o J

only at the expense of conslderably more technical detall. For no.
;
f

tatlonal convenilence we adopt the notation

D, (t) = Pt

ig defined in (2.7). Now (X,u) is a regular point

f the transformation H in (2.10) means bthat the bounded lincar

operstor H‘(xju)i X XU->X X Xc is surjective. The mappiug

in (2.9) has Frechet devivabive given by

& E,T) (n,v)

~~

N
B
D]

S

Taking adventage of (2.6) snd (3.2) it is noted that (X,u)

a regular point of I  is eguivalent to the following control

For each cheice of  (y,A) ¢ X X X, there is an (h,v) e

X % U such that

’ \

(t)n(t) - By (t)n(t-0) -




[TRY

Fatend ) to all of R by defining a{t) = k(O)J >0 and AL

x<mq)1 t < ~g, Defline

#(6) = B(b) - )(4-b).

Then (5.%) can be rewritben as

7 = Pl(t)z(t) + Pg(t)z(tmd> + Ql(t)v<t) + £(t), a.e. on [a,b],

where

1
i

(3.5)  L(6) = ¥(t) - A(6-b) & P (E)M(E-D) + Py (E)n(%-D-0).

1f (X,U) is a regular point of H, then there is a Vv ¢ U guch thatl

\

(3.6)  Py(B)z(t-o) + @ (t)v(e) + £(t) = 0 a.e. on [b-0,b]

«

v . - 4 . o .

The eguation (3.6) must have a golution Vv e bg([b_U)bJ)R Y for every
admissible choice of { of the form (3.5). On the interval [b-o b]
function +t > y(t) is an arbitrary Ly, function. It easily Tollows

N . . R . . M, P L1, . I
that the mapping Q. 12([b~6Jw]JR ) ~>12([bmﬁjb]JRl) defined Ty



F s Y | MV . TP

(.7 (v () = Q (t)v{t), b -0 <t<h,

must be gurjective. Using the conditiong (2.5)(a) we find thet
L, oy? 4

T b Ql(t)H , @ E.t < b die dintegrable go that @ is actually a

bounded linear operstor.

ince @ is surjective it follows [17,

,X,,

pg. 1617 that Q7 is also a surjection where @ is the adjoint

of Q. One can ecagily verify thatl

e for

_ - . n ) , .
for ¢ € Ly([b-u,b],R ). Choose the natural basis ey ,...,e

n . , . n " . S
R7, and congider these vectors in R as vectors in LE([O_UJbJ}n )

in the obvioue way. Then there exist 1,058, € Lz([b—ﬁ}b]jRn>

(@76, (1) = e, = 0 (L) ()¢, (1), a.e. on [b-o,b].

)

Cousequently, Tor almost every U € [b-o,b] the n Xn matrix

i

A OEN g s e * s s s a o a
Qlft)qq(u) ig invertible. Thus QQ° is a bijective continuous Line:

. . - o . . e
mapping on Ig(towojbjjﬂ ). The open mapping theorem.LGj agsuray ug

that  (QQF)" " is alsc a bounded linear mapping. By Holder's in-
equality and the boundedness of (QQ¥) 1t 1s determined that

b PR Mg b N A NS
[ @) swllan <t § e (e ) s (6o
~0 o i o1 - )

< Pl @)™ el

|
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for each ¢ ¢ lp(tbmoybjjﬁ Y. Applying the converse to Holder's in.

equality 2L, pg. 2771 we obtain that the function
3. . 5 FO N

". -y J.
(§‘9) Lo
is weil defined almosght everyuhere on [b-o,b] and is integrable on
[D"G,v bJ N

There ds an immediste partisl converse to this result.

. ’ ’ AL . .
Surpose th Q. (BN (1Y de duverhihle almost everiruhe oo |
o l N/ »1 N/ ©

and suppose the function in (5.9) is integrable on the inter

-

[b-o,b]. Let X(tjs) be the fundamental matrix for the homogenecous

equation corresponding to (3.14), i.e., %(t,s) is an n X 1o malrix

such that s X(t,8), s <t 1

m

the sbsolutely continuous solution

to

!

S (6,8) = X(b,8)P (s) - X(b,5+0)Py(540), 8 <t

5
N
o
o
C+
g
)!
.
;
i

n X n identity matrix

<
~~
[
AvY
w
~
it
O
n
vV
o

[T, rg. 2259]. Just as in [22] one can verify that the matrix

~
N
.
=
@]
~—
0 e
>
N
—~
b
Q
[92]
D)
5
~
[
RN
LD,
i
—~
m
'
nd
N
o
&
<
n
S~
jon
[

has rank n. For cuppose the matrix has rank legs than n. Then



cuch that

——
)

a nonvero vector 3 o¢

Qi(s)xﬁ(bmojﬁ)n =0 a.c. on [a,b.o].

T . R ¥ X SO N S S T - -~ . Ty ert
Since., however, @ (s mist have rank n a.e. on [a,b] we have
b 5 “] / b

That

X (b-o,s) = 0 s.e. ou [a,b-0]

vl
b
]
o
j)

g0 1 = O contrary to our assurption. Since the matrix (3.10)

.y - Tl T ey b D .
has rank n one can select a suitable 7 ¢ R such that the function

N

> v(s) = Qi(s)X*(bmd,s)n; a<s<b.a

. e

will provide a solution on the interval [a,b-g] to the

equation in (3.14) satisfying the boundsry conditiong

(%.11) z, =V, - A(-0), z(b-g) = O.

:

Thiz follows at once from the variation of parameters formula [T,

»

pg. 3611 and the fact that the matrix in (3.10) is invertible. Now
the aggumptions on QW aggure us that v can be extended to an

function on [a,b] in such & way as to assure (3.6) (and he

(5.10)) by teking v(t) = @ ()L}, b - ¢ <t <b for an appron

o
A

. f e T (e : A% tea 5 hour e ne ohiorre
cholce off ¢ ¢ 12(1bw0.bj7ﬁ J QLT has a bounded inverse as above).




17
U ds oa point of the

the motrix Q. (t) has rank =n

o+
oy
¢
&
|~
N
[
s
D)
f;
-

t) is dnvertible for al-
o

[b-0,b]. Moreover, 1f the matri

and if the funclion in (3.9) is integreble on [b~c,b], then

~

is a reguler point of the transformaticn .

The necessary condition of €

also gulfilcient in lhe case vhere Ql iy T 01
the other hand for sufficiency in the time dependent case one can
clearly relax the assunptions on Q1(t) on the interval [a,b-o] to

any assumption assuring that the metrix in (3.10) has rank n  theve-

o

by guaranteeing the existence of an 12 control v such that the

differential eguation in (5.&) has a solution wilh boundary condi

Pr“
'\
)

(».11) (Cf.) [22]). The conditions for regulerity of H are th

the analogs of corresponding results for ordinary

o

control probl

17, pe. 2567. If the right end condition in (1. 2) involved a point

. n .
constraint x(b) = x, € R or more generally G(Xb) = Q where
TN, 1r > 2 ¥ 2 T ol P

G. AC - R is & "suitable" continuvously differentiable Tunction,

then conditions for the regularity of the associated Lagrange mu
plier problem are easier to obtain. The expected connections with

the controllability of the corresponding linesr system {3.3) were

establisked in [11]. It is also ingtructive Lo compare Le

with the sssumptlons in [10, pg. 3527,



We can now apply the clossical [

209 or 17, pg. 2437] to problen (I1).

;

Let (%,¥) be a solution to (PL), and let (x,u) be

a reguler point of the transformstion H  in (2.10). Then there is
. . n L : a s ,
a function 1ql [a,w) =R guch that nl[a«bmdj is an absolutely
7 - 7

continuous solution to

() = (@ L), 0(6))) T+ () Dy (e, () K (bee) V) ()

()

+ (o) DT (T % (o), x(6),ultre) ,u(tro-T))
a.e., on f{a,b-0], and there is a p e Xc such that

o(1) = () - i(6b), b-o<t<DH

c+
)
]
e
L
]
j97]

ig absolutely continuous and ss

5

('2) “b<t’>x = (I)]_L(ty.:;i—(t)).{I(/i‘v’)))% + n(—L)yle(t:.}E({:)J;”(t"O‘)/I;CL)/U(L’”L\)\/

a.e., on [b-g,b] and

() §(0m0) = n((0-0) )= f(-0) - p(-0)




Moreover, the Tollowing egualitics are satisficd

(PRI, F (), T6)))F + 0 (6)¥D,8 (6, 5%(6), 5(6-0),T(1), ¥ (b))

(N“) + n(L+T)%D“f(t+Tj§(t+T)5§(tmd+T)}ﬁ(t+T);ﬁ(t))

=0 a.e., on [a,b-7], and
J S

()

2

a.e., on [b-1,b].

-

Proof. The Lagrange Multiplier TheoremA[l6} pg. 209, 17

reveals that there ig a A e ¥ and pu e XG such that
(1) 3 Gow) () + (o (,u) (B, V)0 + (B ,u) = 0

for every h e X and v e U. Using the notation in (2.7) the result
in (k.1) yields with the aid of (2.5), (2.1) and (2.8) the following

X

two equations

b . .
J (D I(E),n(e)) + (B{t) - D F(E)n(t) - DE(L)n(t-0), () Jat
a

L.2)
(i.2) .

+ (h{b-c),p(-0)) + [ (ﬂ(b+9)7ﬁ(0))d9 = 0
-C

for every h ¢ X with ha = O, and



—~
N
R
) ey
—
~
St
'\,v
—~
—
P
“
<
N
e
~—
~
.
[y
—
/‘\
L
!
N
=
—)
—

for every v ¢ U. Ixtend the funchtion A by defining

(b1 A{t) = a(b), t>Db.

Taking h_ = hb = 0 in (4.2) onc can reszdily verify

U
I 1o L), n(t))
" 1
(4.5)

+ (A (6),n(t))jdt = 0.

A modification of the Fundamental Lemna of the Calculus of Varistions

10, Lemus 15.2, pg. 51 gives thabt there is & ¢ e R such theat
P2 2

t
ML) = ¢+ [ [DL(s) - (D]‘f’s))y a(s) - (D, i\u+o))‘)(k vo) Jds
a - -

.«
a.e., on [a b-o]. We may, henceforth, assume that M\ ig actually

abgolutely continuous on [a,b-c] and

(&.6)

g
K

(6) = (D,T(6))" - A(6)*D,F(6) - At

DEZP"( o)

~

eg.e., on [a,b-¢]. Return now to the situation in (4.2), but this

tine take h{t) = 0 on [e-g,b-c] and we arrive at



Once more applying the modificd version of the Tundamental veriehionsl

3

lemma [10, pg. 517 1t is determined that if we define

(.8) p(t) = 2(t) + B(t-D), b -o<L<b

P

J

. . n
then there 1g & vector K e R guch that

t
: . wen um: "X' - \
p(t) = K + é U[Dlz_.(s) - (DyE(e))" A(e)Ids

a.e., on [b-0,b]. Therefore, p(t) mey be agsumed absolutely con-

tinuovs on [b-o,b] and

PR TR P
(%.9) o(t) " = (D L(t))" - A(%) D, f(t), a.e. on [b-g,bl.

This two step procedure leading to (h.6), (4.8), end (4.9) mey loave
a possible ambiguitly in the assignment of & value to A at b . o.
However

, from (4.2) we see that

b-o . . . . Lo _
(k.10) f [(DlL(t)ﬂh(t)) - ((le(t))% A(t) + (Dgf(t+q))“ Aoy, n(t))



-+ <> (t), }‘1 (t)) 1ot + (n(b-o) Ju(-o))

J

b . :
4 f [(Diﬁ(t);h(t)> - ((DlT(t))* A (L), n(t))

b-o

+ (p(t),h(t)) ]t = 0

for every h ¢ X with ha = C. Since 0 is abgolutely conlinuous

on  [b-o,bj end A ig absolutely continvous on [a,b-o], the terms

.b - O‘ . 3 b -
[, R, [ (e(6),R(E))at

o
=

in (4.10) can be integrated by perts to remove the bLerms involving

h. Then an obviocug limiting process leads at onceé to

p(b) = 0 = A(b) + 1(0)
(k.11) )
p(b-a) = A((0-0)7) + p(-a).

Finally, turning to the equation (4.3) (valid for every v e U) it

is noted that this equation can be written as

(h.12) - { (]J“Af(::,»f-'f))”v“ 5\.(5+T))v(s))]ds

[(DaT(s), () - {(0,F())* Ms),v(e))]ae= O



for each v ¢ U. Tt follows gt once that

a.e., on [b-1v,b]. If we change variables by subshituting n = A

in (-‘i— . )-L)

J

(h.6), (4.8), (k.9), (k.11), (B.22), and (L.15), then we

get exactly the necessary conditions (Nl) through (N%) stated in the
b

theorem.



For Lineaxr

have the Tollowing simple analcg of a result in Tee snd Mar

Let the system eguations in (P) of Section 2 have the

(5.1)  x(t) = Ao(t)x(t) + Al(t)x(two) + Bo(t)u(t) + Bl(t)u(tww}
a.e., on [a,b] with end conditions
(5.2) X, =9, X =V

where @ and Vv are fixed functions in X . Let the cost func-
o
tionai J in (P) have the special form

b

- O, 1 .
J(x,u) = [ [£7(x(s),s) + w5 (u(s),m(t)u(s)) Jds.
a

) . 1 . . n o_n, -
Let the mappings™ A, [a,b] —ai(Rn,ﬂn), B, - [a.b] —v>.;£(]?{m7Rn)_.7

. oo . o
1, and N. [a,b] »«(R,R ) be continvous. The transform

o s . s . . 0. o
N(t) s positive semi-definite for each t e [a,b]. Let £ ! R X

l:.:O

0]

b

. . 0 n . .
R — R be conbtinvous, and let xi» £ (xt), x e R Dbe continuously

differentisble snd convex for each t € R; the convexity condition

L . v ._q
: , - i X , D
£(R",R") denotes the veclor space of all linear meppings from R

. G - .
intc R* wilth a sultable norm.



n

mea that for ecach t e R, z, x ¢ R the inequality,

N
n
.
W
s

led. Then the following conclusions hold!

(A) If N is positive definite, then there is at most one
golution (%,1) to problem (P).
(By If £ >d fFor some constant 4, if N ig positive

.

definite, end 1f there is at least one pair (x,u) € X X U sabtin.

fying (5.1) and (5.2), then there is an optimal solution to problem

(globally).
(C) TLet (X,0) € X xU setisfy (5.1) and (5.2). If func.
tions poeX_, m! [a,) - R exist such that 1 is sbsolutely

contimuous on [a,b-0],
p(t) = q(t) - 0(t-b), - o<t <D

ig absolutely continuous, and such that the following conditiocns are

fulfilled:

0
. OFY N *
(1) -n{t) = E;W.(x(t)jt) + Aokt/n(u) +‘Al(t+0)n(t+d)

a.e., on [a,b-o],



N ~ 'O
. , 04 g Wy n
(]\gg) -p(t) — (2 () 5 ) -+ A’O (L) ()

a.c., on |b-o,b],
7 -

n(o) = §(0),
(x) 1(0-0) - n((b-)7) = (o) - u(-0),

n{t) = 0 t>D

(1) (L)L) + B ()n(e) + }s‘;[(t»:w)»qit-m) =0

a.e., on [a,b-1], and

(..) N(EYE(6) + By (6)n(t) = O

a.e., on [b-7,b], then (X,U) is a global solubion to the problem

Remark 5.1. Note that even when conclusions (A) and (B) are satis-
fied choice of 7 and p may not be uniquely determined by (Nl>

through () and (5.1), (5.2) so some sufficient condition as in
sD

(C) is needed.

Proof. Statement (A) is an immediate consequence of standard

properties of linear systems and the gtrict convexity of Tunction

J in the variable wu. The assumptions in (B) admit the vossibility



"l

ol debermining a sequence (er“ Y e X XU
1

~~
n
!

5.2) such that

(5.4 Lim J(x u») = inf {J0,u)] (,u) e X X U satisfies (5.1) and (5.

= 1.

The specilal form of the integrand fFor J(X;u) tells us that the sequence

{un} is bounded in L,. Therefore, we may extract from {u_} a sub.
2 )
seqguence which we still call {up} such thal un is weakly convergent

toa u e U. One can easily verify that the sequence vnl t F>uw(tmm)
must then converge weskly to V. tl»Uu(t-t). Hence the veriation of

N

parameters formula [T, pg. 361] epplied to (5.1) shows at once

sponses X, to the controls U must converge pointwisge to a Tunction
X € X which is the response to control U ¢ U. Actually one could

show that the convergence X ig wniform on [a,b] [cf. 20]

but this stronger resvlt is not needed here. Using Fatou's len

!

b
the weak lower semi-continuity of the functional wul» [ (u(L),n{t)u(t))dt
a

-

(see [16, pg. 1231), it follows at once that

J(EJH> < Hm dnf J(xn’un) -

and  x,u satisfy (5.1) and (5.2). Therefore, J(¥,U) = m. This proves

(3).

Let x,u satisfying the assumptions of part (C) be called re.
spectively an exbremal respounse end an extremal control., Define &




N A Coe IO - . o
function %0 § x [a,b] =R by

(5.5)  LZ{u,t) = - 5 (0, N(t)v) - (Bé(t)n(t)‘+ Bi(t+w)q(t+w>;u>g

Now o SZ/du = -W(t) eand O%(n(t),t)/ou=0 a.e., on [a,b]

(note that n(t) = 0 if t > b). Hence we have

b b
(5.6) [ ZZ(0(t),t)at > [ Sz(u(t),t)at
a

for every u ¢ U. With a little Juggling one can show that

b b

[ S(a(e),8)at = [ [- 5 (u(6),M(E)u(t)) - (1(8),B,(t)u(t))
a a

(5.7) '
- (n(6),B, (B)alt-1)) Jab

for u e U (recall that u(t) =0, a - 7 <t <a). Define xo(t)}

a <t <D to be the abgsolutely continuous solution to

where (x,u) e X x U. Suppose (x,u) e X XU satisfy (5.1) and (5.2),
0 . - o .

and suppose X (t) denotes the solution of (5.8) when (X,u) is cub-

stituted for (x,u) on the right hand side of (5.8). We want to prove

that
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Bl

in problem (P) subject to the smocthnegs hypotheses of Section 2 and
[ J k

growth conditiong (2.5). Then define
St(u,t) = <000, t) - (n(6),nlu,t))

and in Theorem 5.1 (C) replace (Nﬁ) and (NS) with inequality (5.6)
€ . .

(of course - 5 {(v,N(t)u) is replaced by ho(u)t)). With these pro-

visions one again obtains the validity of sufficient condition

Theorem 5.1 (C) (cf. [15, pg. 341] and Exemple 5.2 below).

Exomple 5.1. Consider the scalar system

b
i

-x(t-1) + u(t), 0<t<2

with cost functionsl

2
(5.15) | IJ(x,u) = [ u
0

edt

end control set U= L,[0,2]. Problen (P) for this example was solved

in [11] for an arbitrary initial function ¢ = X. Here we consider



N

only the special casge (5$lh)e Tirst we point out that the sol:

L, u which r

28

to this problem involves more than merely Iinding

* 2

ATt - T 11y S e
Juat, weU subject to (
O

>

S s}

)vlh)j but with the wright end condition

repleced by X(l) = 0. (The zero level can then be maintained on

[1,2] by vsing u(t) = X(t-1) on [1,2].) This procedure yields

]
L
an incorrect sgoluticn to the problem. However, this problem can be
gelved by standerd methods 1] by transforming the original problem

- .
!

into the following equivalent problem:
N p 2
Minimize J{x,u) = [z + u dt

subject to constraints

bl
N

c+
~?

1

~x(t-1) + u(t), 0<t<l

This simple problem was chosen so that it could be solved by two dif-

ferent methods and permit us to check the validity of Theorem L. 1.

We present only the golution to problem (P) for (5.14) and (5.15) usin

the results of this paper. Applying TheoremA(5ﬂl) (8), (B) (it is not

Qu

¢

dsTying (5.14)). We see there is a unigue optimal soclution {x,1)

o

pasts

m

to problem (P) for (5.14) and (5.15). Using Theorem 4.1 we get

ifficult to show there is al least one admissible pair (x,u) ¢ X X U

o

=



!

AN

O
!

W) = en(6)/2, 0<b<P

n(t) = n(t+1),

p(t) = n(t) -~ 1(t-2) =0 1<t <z,

so that

(1) - n(0) + p(t-1), 0<t<

I

n(t) =

p(h-2) <t <2,
Therefore
T
K+ [ v(s+l)ds 0<t<l
(5.16) Ult) = 1
¥{s) 1<t<2

where K = n(0) - W(i) - 1(0) , 7(t) = :ﬁgglgl-, 1<t <2, Now solve

the differential equation (5.11) with the two boundary conditicns.

One finds that for 1<t <2

t t p-1l
(5.17) [ v(s)as - [ [ [ v(s+1)dsdrdp =
1 10 1
1r e j\2
K o~ [ [ y(s+l)dedr + (t-1) + [-14K] jféﬁxmw.
01

The complicated integral equation actually reduces to an ordinsry

differential eguation



t -
g0 that y(t) = ge -+ be V} L <t <2, Thig result is substituted

back in (5.17) to get

K = L T 1.

Using (5.16) we get

T(t) =

and solving (5.14) with this U we fing

x(t) =




AN
N
i

Theorem 5.1 (C) applies to give that (X,U) above iz indecd the

optimal solution to our problem,

Bxample 5.2. This example is algc of the simplest type, and is sinmed
at illustrating how a problen with an additional control constraint

lu] < L can be dlgpatched by a standard device. Take the sgcalar

system

%= wx (-1} o+ osin v(t), 0<t <2
;5 .

(5.16

with cogt functional

2 .2
(5.19) J(x,u) = [ fi%;l at .
0

Suppose there is an optimum solution (¥,V) to problem (P) with (5.18)

J

and (5.19), then Theorem 4.1 says that

i) = n(t+l), o<t <1
(5.20) n(t) = p(t-2), 1<t<2

cos V(t)(sin v(t) + n(t)) = 0, 0<t <2,

With the sufficient condition of Remark 5.2 in view it is seen that

choice of ¥ go that



+1 n(t) < -1
(5.21) sin v{t) = ~n{t), -l < n(t) <1

-1, n(t) > 1

will give the validity of inequalilty (5‘6) in the modified Fform of
Remerk 5.2. Thus it is now only a guestion of solving the complicated
integral equation that results from meebing the boundary conditions

(if poseible) of (5.18) subject to (5.20) and (5.21). Specializing

function  of (5.18) so that the right end condition is

-2 -1 -1
%(t) =e -2 T +e’t, 1<t<2

the opvimum solution x,u = sin v is given by

()

o
N
i
QS
’-
w
}..h
o]

<}
N

i
p—

[H

e—t , 1<t <2



el
L

Kent [12] solved a number of obher examples of a morc

lication of our results or Kent's (where

complicated nature. App

the two approaches speak to the same class of problems) have yie!

identical solutions to example problems,
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